UNION CURVATURE OF A VECTOR FIELD IN A SUBSPACE*

BY

R. N. KAUL

ABSTRACT

The differential equations of union curves on a hypersurface V_n immersed in a Riemannian V_{n+1} have been obtained by Springer [1]. These results were generalized later for a subspace in a Riemannian space by Mishra [2]. The author [3] has defined the union curvature of a vector field with respect to a curve on a hypersurface V_n of a Riemannian V_{n+1} .

The purpose of this paper is to consider union curvature of a vector field with respect to a curve in a subspace V_n of a Riemannian V_m .

1. Subspaces of V_m . Totally indicatrix variety of a vector field.

Consider a subspace V_n of coordinates $x^i (i = 1, \dots, n)$ and metric

$$ds^2 = g_{ij}dx^i dx^j$$

immersed in a Riemannian V_m of coordinates $y^{\alpha}(\alpha = 1, \dots, m)$ and metric

$$ds^2 = a_{a\beta} dy^a dy^\beta$$

Let $N_{\sigma/}^{\alpha}$ ($\sigma = n + 1, \dots, m$) be the contravariant components in the y's of (m - n) independent mutually orthogonal unit vectors normal to V_n , then the following relations hold [4]

$$(1.3) a_{\alpha\beta}N^{\alpha}_{\mu\prime}N^{\beta}_{\mu\prime} = 1$$

(1.4)
$$a_{\alpha\beta}N^{\alpha}_{\mu\prime}N^{\beta}_{\sigma\prime} = 0 \qquad (\mu \neq \sigma)$$

(1.5)
$$a_{\alpha\beta}N^{\alpha}_{\sigma/}y^{\beta}_{,i} = 0 \qquad (\sigma = n+1, \cdots, m)$$

(1.6)
$$y_{;ij}^{\alpha} = \sum_{\sigma} \Omega_{\sigma/lj} N_{\sigma/}^{\alpha}$$

where the coefficients $\Omega_{\sigma/ij}$ are symmetric covariant tensor of the second order.

Let V be a field of unit vectors in V_n such that if $x^i = x^i(s)$ defines a curve C in V_n , there is associated a unit vector with each point of the curve. If v^{α} and p^i are the components of V in the y's and the x's respectively, then $v^{\alpha} = y^{\alpha}_{,i}p^i$.

^{*} The author is indebted to the referee for helpful suggestions.

Received March 5, 1965.

We have the following relation for the derived vector T^{α} of V in V_m with respect to the curve C [3, 4, 5]

(1.7)
$$T^{\alpha} = \sum_{\sigma} \left(\Omega_{\sigma/ij} p^{i} \frac{dx^{j}}{ds} \right) N^{\alpha}_{\sigma/} + {}_{v} k_{a} q^{i} y^{\alpha}_{,i}$$

As an analogue to the osculating variety of a curve C we define the totally indicatrix variety of a vector field V with respect to the curve C as that determined by the vector field V and its derived vector in V_m with respect to C. Further let us consider a set of (m - n) congruences of curves one curve of each of which passes through each point of V_n . Let $\lambda_{\tau_i}^{\alpha}$ be the unit vector in the direction of a curve of the congruence which is in general not normal to V_n and therefore may be specified by

(1.8)
$$\lambda^{\alpha}_{\tau/} = t^{i}_{\tau/} y^{\alpha}_{,i} + \sum_{\sigma} c_{\sigma\tau/} N^{\alpha}_{\sigma/}$$

where $t_{\tau/}^{i}$ and $c_{\sigma\tau/}$ are parameters.

It is easy to verify that [2]

(1.9)
$$g_{ij}t^i_{\tau/}t^j_{\tau/} + \sum_{\sigma} c^2_{\sigma\tau/} = 1$$

$$\cos\theta_{\sigma\tau/} = c_{\sigma\tau/}$$

and

1 10

(1.11)
$$\cos \alpha_{\tau/} = g_{ij} t^i_{\tau/} p^j$$

where $\theta_{\sigma\tau/}$ and $\alpha_{\tau/}$ are the inclinations of the vector λ_{τ} to the vectors $N_{\sigma/}$ and V respectively.

2. Union curvature of a vector field. If we consider an indicatrix in V_m with the above direction $\lambda_{\tau/}^{\alpha}$, then the condition that it is an indicatrix variety of the vector field V requires

(2.1)
$$\lambda_{\tau/}^{\alpha} = u_{\tau/} y_{,i}^{\alpha} p^{i} + w_{\tau/} T^{\alpha}$$

where $u_{\tau i}$ and $w_{\tau i}$ are parameters to be determined.

From (1.7), (1.8) and (2.1) it follows that

$$t^{i}_{\tau/}y^{\alpha}_{,i} + \sum_{\sigma} c_{\sigma\tau/}N^{\alpha}_{\sigma/} = u_{\tau/}y^{\alpha}_{,i}p^{i} + w_{\tau/} \left[\sum_{\sigma} \left(\Omega_{\sigma/ij}p^{i} \frac{dn^{j}}{ds} \right) N^{\alpha}_{\sigma/} + {}_{v}k_{a}q^{i}y^{\alpha}_{,i} \right]$$

and therefore we obtain

 $(2.2) u_{\tau/} = p_h t_{\tau/}^h$

1965]

_ 1

(2.3)
$$\frac{1}{w_{\tau/}} = \frac{\Omega_{\sigma/ij}p^i \ \frac{dx^j}{ds}}{c_{\sigma\tau/}}$$

and

(2.4)
$${}_{v}k_{a}q^{h} + \frac{\Omega_{\sigma/ab}p^{a}}{c_{\sigma\tau/}}\frac{dx^{b}}{ds}\left(t^{i}_{\tau/}p_{i}p^{h} - t^{h}_{\tau/}\right) = 0$$

Since (2.3) implies that

$$\frac{1}{w_{\tau/}} = \frac{\Omega_{\sigma/ij}p^i \frac{dx^j}{ds}}{c_{\sigma\tau/}} = \frac{\Omega_{\rho/ij}p^i \frac{dx^j}{ds}}{c_{\rho\tau/}}$$

therefore (2.4) may also be written as

(2.5)
$$\mu_{\tau/}^{h} \equiv v k_{a} q^{h} + \frac{e(v k_{n})}{(\sum_{\rho} c_{\rho\tau/}^{2})^{1/2}} \sigma_{\tau/}^{h} = 0$$

where $e(vk_n)$, the normal curvature of the vector field V with respect to C in V_n of V_m , and the vector σ_{v}^h are defined by

$$_{v}k_{n}^{2} = \sum_{\sigma} \left(\Omega_{\sigma/ab}p^{a}\frac{dx^{b}}{ds}\right)^{2}$$

and

$$\sigma^h_{\tau/} = p_i(t^i_{\tau/}p^h - p^i t^h_{\tau/}).$$

The vector with components $\mu_{\tau/}^h$ will be called the union curvature vector of the vector field V with respect to the curve C relative to the congruence $\lambda_{\tau/}$. Thus union curves of a vector field V relative to a congruence $\lambda_{\tau/}$ are curves along which the union curvature vector $\mu_{\tau/}^h$ is a null vector. Its magnitude which is the union curvature of the vector field V with respect to C relative to the congruence $\lambda_{\tau/}$ is given by

$${}_{v}k_{u}^{2}(\tau) = \mu_{\tau/\mu_{\tau/h}}^{h} \\ = \left({}_{v}k_{a}q^{h} + \frac{e({}_{v}k_{n})}{(\sum_{v}c_{v\tau/}^{2})^{1/2}}\sigma_{\tau/h}^{h}\right) \left({}_{v}k_{a}q_{h} + \frac{e({}_{v}k_{n})}{(\sum_{v}c_{v\tau/}^{2})^{1/2}}\sigma_{\tau/h}\right)$$

or

(2.6)
$${}_{v}k_{u}^{2}(\tau) = {}_{v}k_{a}^{2} + \frac{2{}_{v}k_{a}e({}_{v}k_{n})}{(\sum_{v}c_{v\tau/}^{2})^{1/2}}q^{h}\sigma_{\tau/h} + \frac{{}_{v}k^{2}}{\sum_{v}c_{v\tau/}^{2}}\sigma_{\tau/h}^{h}\sigma_{\tau/h}.$$

If $e(k_n) = 0$, then (2.6) gives

$$_{v}k_{u}(\tau) = _{v}k_{a}$$
. Hence:

17

R. N. KAUL

The union curvature of a vector field V relative to any congruence λ_{ti} with respect to asymptotic lines of the field V is the associate curvature of the vector field V.

From (2.6) we find that ${}_{v}k_{u}(\tau)$ vanishes if ${}_{v}k_{a}$ and ${}_{v}k_{n}$ are both zero. Thus:

If a curve in V_n is an indicatrix as well as asymptotic line of the vector field V then it is also a union curve of the vector field V relative to any congruence λ_{xl} .

If the congruence be one of normals to V_n in which case $t_{t/}^i = 0$, it follows from (2.6) that

Therefore:

$$_{v}k_{u}^{(\tau)}=_{v}k_{a}.$$

A union curve of a vector field V in V_n relative to any normal congruence $\lambda_{t/t}$ is also an indicatrix of the vector field V.

Making use of (1.10) and (1.11) in (2.6) we obtain for the magnitude $_{v}k_{u}(\tau)$ of the union curvature of a vector field relative to the congruence $\lambda_{\tau/}$ the following relation in terms of the inclinations $\theta_{v\tau/}$ and $\alpha_{\tau/}$

(2.7)
$$v_{\nu}k_{\mu}(\tau) = v_{\nu}k_{a} - e(v_{\nu}k_{n}) \left[\frac{\sin^{2}\alpha_{\tau/} - \sum_{\nu}\cos^{2}\theta_{\nu\tau/}}{\sum_{\nu}\cos^{2}\theta_{\nu\tau/}}\right]^{1/2}.$$

Taking m = n + 1, $N_{\nu/}^{\alpha} = N^{\alpha}$ and the vectors of the field V tangent to the curve C, we find that the formula (2.7) for $_{\nu}k_{u}(\tau)$ agrees with the known formula for k_{u} given by Springer [1]. In this case we obtain

(2.8)
$$k_u = k_g - k_n \left(\frac{\sin^2 \alpha - \cos^2 \theta}{\cos^2 \theta}\right)^{1/2}$$

If the congruence be one of normals to V_n , then $\cos \theta = 1$, and $\cos \alpha = 0$, therefore (2.8) yields the relation

$$k_u = k_g$$

which is the known result [1] that corresponding to a normal congruence, the union curves are geodesic curves.

References

1. C.E. Springer, Union curves of a hypersurface, Canadian of Maths., 2 (1950), 457-460.

2. R. S. Mishra, Sur certaines courbes appartenant a un sous-espace Riemannien, Bull. Sci. Maths., 19 (1952), 1-8.

3. R. N. Kaul, Union curvature of a vector field, The Tensor (New Series), 7, No. 3 (1957), 185-189.

4. C. E. Weatherburn, An introduction to Riemannian geometry and tensor calculus, Cambridge University Press, 1950.

5. T. K. Pan, Normal curvature of a vector field, Amer. of Maths. 74 (1952), 955-966.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA